Physiological signals in daily life among tobacco, alcohol and cannabis users: Discriminating craving from no-craving episodes
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Addiction is characterized by a loss of control over use of reinforcers such as substances (alcohol, tobacco, cannabis...). Craving is a clinical phenomenon defined as a strong urge to use (Auriacombe et al., 2018) and plays a central role in addiction
(Gauld, Baillet et al., 2023). Craving is a dynamic phenomenon that fluctuates in intensity and frequency and the daily variations of which are prospectively associated with use by Ecological Momentary Assessments method (Cleveland et al., 2021;

Serre et al., 2015). It is the cause of repeated relapses and yet, identifying/reporting craving episodes can be difficult for some patients (Raftery et al., 2020). The identification of biomarkers of craving could compensate for this. Craving is
associated with changes in autonomic arousal and unique neurobiological changes (Sinha et al., 2009), that would be identified in daily-life (Carreiro et al., 2020, 2021).

To discriminate craving from no-craving episode through the analysis of physiological signals captured in daily-life with Ecological
Momentary Assessment and biosensors among participants with addiction.
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